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An asymptotic method of integrating the free vibrations equations of a non- 
circular cylindrical shell, freely supported along the curvilinear edges, is pro- 

posed. The qualitative singularities of the vibrations associated with the fact 
that the shell is essentially noncircular are clarified. Numerical results are 
presented for the free vibrations frequencies and modes of a box shell which 

are compared to the results of the asymptotic analysis. It is supposed that the 

variability of the stress and strain states is great. 

1, The bending equations of vibration of a cylindrical shell of arbitrary outline in 
displacements are, when second degree terms are discarded 

h-$g , ;==2Bhm, q=2Ehv, j== 2Ehw 

The notation from the monograph [l] is used here and it is considered that a is the 

dimensionless length of the shell generator, p is the dimensionless length of the cross- 
sectional perimeter, K = R (p) is the dimensionless radius of curvature of the cross 
section, h is half the dimensionless shell thickness (we consider h < 1). The dimen- 
sionless frequency parameter h and the quantities E, r~, 5 are defined by the formu- 

las in the parentheses in (1.1) (for brevity the symbols E, 11, 5 are called displace- 
ments), where m is the mass per unit area of the middle surface, (1) is the vibration 
frequency, and r is some number characteristic for the shell with the dimensionality 

of a length. All the dimensionless quantities in the problem are referred to r. In writ- 

ing (1.1) it is considered that the shell performs harmonic oscillations and the factor 
sirrot is omitted from the sought quantities. 

Let us first consider a closed circular shell, supported freely at the circular edges. Let 
us seek the solution as 

E = &,coskasirr r@, q = q,sin kacos n/3, g = &sin kasin n/3 (1.2) 

Here n is an integer and E,,, I]~, &, are to be determined. Since n is an integer, then 
the condition that the shell be closed is automatically satisfied if r is considered the 
radius of its cross section for a circular shell. 

Let us assume that there is one half-wave along the generator since the shell would 
be divided into several sections in the case of several half-waves, each of which would 
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behave identically. Then the free support condition at the edges o = 0 and ~1 = 1 
yields the equation kl = TC to determine k. In the following analysis we shall consi- 

der that I, and consequently k , are quantities of the order of unity ; this also refers to 
noncircular shells. 

Let us examine vibrations with sufficiently high variability, hence we assume 

h-l> n> 1 (1.3) 

The left inequality yields the domain of applicability of the initial equations (1.1). 

Substituting (1.2) into (1. l), we obtain a homogeneous linear system of three equa- 
tions with three unknowns for Es, q,,, c,, . Equating its determinant to zero, we obtain 

a cubic equation for a,, = (1 - 02) i 

ho3 _ _?.$L n74,02 + !+2- n4& - 
(I - a)Z2(1 + a) k4 _ (1.4) 

!g (1 - 6) n8 = 0 

in which only the terms essential under the assumptions (1.3) have been kept. (Let us 

note that it is also possible to arrive at (1.4) by using formulas which are obtained from 

(1.2) by replacing sin rz@ therein by cos n/!l and cos n@ by sin n/3.) By keeping in 
mind the assumptions relative to the orders of h, k, n, it can be shown directly that 
(1.4) will decompose into a quadratic and a linear equation to the accuracy of infinite- 
simals on the order of 0 (max {r~-~; h2n2}) , which means that we obtain for the roots 

of (1.4) to the same accuracy 

a 01=n, 2 a,,zq2, a o3 e (1 - 02) s + $ n4 (1.5) 

A graph of h as a function of n for fixed h and k is pictured schematically in Fig.1. 

Fig. 1 ,Fig. 2 

By calculating the displacements corresponding to A1 and x2 it can be seen that the 

inequality 5 < max (E, q) . IS valid (quasi-tangential vibrations [Z]) , but the inequa- 

lity 5 i> max (E, rj) is valid for displacements corresponding to h, (quasi-transverse 
vibrations [Z]). Let us distinguish quasi-transverse vibrations with medium (I< n < 
h-‘/a), intermediate (n u h-Q) and high (rt > h-‘/d) variabilities, For shells tif 
nonpositive Gaussian curvature, the least vibrations frequency is achieved for quasi- 
transverse vibrations with intermediate variability [Z]. Hence, we obtain from (1.5) 
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for hOa that the least frequency parameter h is on the order of h for the circular cy- 
lindrical shells considered here. 

2. Before considering cylindrical shells of arbitrary outline, let us present numerical 
results referring to finding the free vibrations frequencies and modes of box shells. 

Box shells of symmetric oval cross sections (Fig. 2) were examined. Because of sym- 
metry, let us consider the section EFG. Let the arcs EF and FG have the radii of 

curvature R, and R, , respectively. If y denotes the ratio between the semi-axes OG 

and OE of the oval, then by altering R, and R, and the angular measure of the arcs 
EF and FG in a suitable manner, smooth ovals with different y and the very same 
perimeter can be obtained. It is assumed that the box shell is freely supported at the 
endfaces. Keeping this in mind, as well as the constancy of the coefficients of the sys- 
tem (1.1) in a we can seek the solution for the box shell as 

E= &@)coska, q=t-l*@)sinFca, C=P,(B)sinko@=nll (2*1) 

The radius of curvature of the oval is a piecewise constant function of $, hence for 
each R, (v = 1.2) the solution can be sought in the form 

The characteristic equations for (j, are of eighthorder, and we hence obtain eight 
solutions for each R, , Let us limit ourselves to finding the symmetric vibrations modes. 
The frequency equation is then obtained from the condition of smoothness of the solu- 
tionat the point ofdiscontinuity F of the radius of curvature of the symmetric ovaLwhere 
four solutions corresponding to the symmetric vibrations modes are taken on both EF 
and FG 

A program to find the frequncies and their corresponding symmetric vibrations modes 
for box shells, whose cross sections are symmetric ovals, was compiled on the basis of 

the scheme described, and numerical results were obtained on the BESM-4 computer. 
The computations were carried out for certain values of h and y, where o = 0.3, 

1 = n, p = &t/3 in all cases and p is the dimensionless perimeter of the shell cross 
section (we assume r = 1). 

Values of the least h corresponding to the symmetric vibrations modes are presented 

below (see Table 1). 
Table 1 

Y 
h 

1.5 2 3 

- 

IO-3 - 0.7676. 1O-2 - 

10-3 1.155.10-3 0.7532.10-3 0.3704.10-3 

10-4 - 0~7404.10-4 - 

It is seen that the hmtn decrease as the shells flatten out ; this is explained by the 
diminution of the shell stiffness. It is also seen that for box shells whose vibrations 
modes are symmetric &in - h as for circular shells. A computation showed that 
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the vibrations conesponding to the 3Lmi, presented are quasi-transverse. 
The following 49 first values of h were found for shells with h = 10-s and y S 2 

(see Table 2) 
Table 2 

0.000753 0.00137 0.00275 0.00367 0.00599 0.00660 0.0106 
0.01154 0.0194 0.03191 0.04921 0.06853 0.07556 0.1049 
0.1455 0.1964 0.2609 0.3388 0.4326 0.5467 0.6795 
0.7000 0.8349 0.8951 1.019 1.228 1.468 1.746 
2.047 2.114 2.409 2.804 3.243 3.730 4.282 
4.653 4.904 5.555 6.280 6.636 7.084 7.956 
8.904 9.938 ii ‘06 12.27 13.20 13.59 15.00 

Quasi-transverse vibrations correspond to the first 23 frequencies ; for the next va- 

lues of h the quasi-transverse vibrations alternate with quasi-tangentiai and vibrations 
of general form (i. e. vibrations in which none of the displacement vector components 
predominates). It is seen that the density of the vibrations frequencies diminishes as 
the number of the frequency grows. 

Let us present a graph for the predominant displacement & corresponding to the 

first, fourth, fifth and seventeenth frequencies (see Figs. 3 and 4, where the numbers on 

the curves correspond to the numbers 
of the frequencies ; the curve 5 is 
given by dashes for clarity). 

-1 

Fig. 3 Fig, 4 

Graphs are given for the section EFG of the shell since they can be continued by 

symmetry on the remaining portion, where the length scale for the portions EF and 

FG are the same. Let us note that the angular measure of the arc FG is twice the arc 
EF. It follows from the graph of 5, coRes~nding to the lowest frequency that the func- 

tion 5, damps on FG by oscillating, hence there are two pairs of pure imaginary roots 
for 6% on the section EF and ail eight roots are completely complex for 6, on FG .The 
vibrations modes and the roots eV for the second and third frequencies possess the same 

property although the damping of the function i& on FG is less abrupt here. A graph 
of the Z& mode corresponding to the quarter frequency shows that the function &, does 
not damp out on the section FG ; the fact that there are two pairs of pure imaginary 
roots for 13~ on FG corresponds to this (the remaining four roots are completely com- 
plex). The nature of the roots of the characteristic equation for the one-fifth frequency 
is the same as for the quarter frequency. 

It can be concluded from the number of nodal lines that the variability of the mode 
cm corresponding to I, is greater than the mode 5, corresponding to hd and less than 
the variability of & corresponding to h,. The mode ?& for ,&, possesses such variability 
that the variability of the radius of curvature is not essential (here there are two pairs 
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of pure imaginary roots and four real for 8, and 3, ), Let us note that the mode c* cor- 
responding to _L, has a qualitative difference from the mode of circular shell vibrations 

corresponding to the lowest frequency since there is no zone where the vibrations decay 

for circular shells. The damping phenomenon detected here is related essentially to the 
variability of the radius of shell curvature, and as computations have shown, the damping 

will be the sharper the greater the y differs from unity. 

3. Now let us assume that R-l (p) is an arbitrary positive sufficiently smooth func- 
tion. As befor, let us consider the shell simply supported along the curvilinear edges and 

hence the solution can be sought in the form (2.1) by assuming that k is found from the 
formula in (2.1). Let us examine the vibrations of open shells, i.e. vibrations with homo- 
geneous boundary conditions on the rectilinear lines p = 0 and p = PO. 

Upon substitution of (2.1) into the system (1.1). we obtain a *system of eighth order 
ordinary differential equations with coefficients dependent on fi for &, q*, <, . Being 
interested in the state of stress with sufficiently high variability, let us seek the solution 

of this system by the method of exponential representation 

E, = exp (f/e) (e2 El + 9 E, + . . . >, % = fw (f/E) [ET1 + (3.1) 

z?aQ‘ -+- . . .) 

Let us define the small parameter E in (3.1) thus: 

E = (h / r/3 (I - q)1”’ (3.2) 

The f, &,, qy, I& in (3.1) are the desired functions of p but A, are the desired const- 

ants. The parameter E defined by (3.2) and the powers of E for Et, ql, c1 in (3.1) 
are selected such that the correspondence of the desired solution with the quasi-trans- 
verse vibrations with intermediate variability is obtained in the sense that the modes 

and frequencies of the quasi-transverse vibrations with intermediate variability of cir- 

cular shells possess the same asymptotic orders as the principal terms in &, q+. j, 
and .8 of (3.1). However, such a correspondence does not mean that (3.1) hold every- 
where, about which more below. The quantity f is catled the variability function, and 

&,, qy, pV are intensity coefficients. 
Substituting (3.1) into the above-mentioned system of ordinary differential equations 

and equating coefficients of identical powers of E in each of the system equations, we 
obtain a set of recursion systems of linear algebraic equations for the intensity coeffici- 

c_ 
ents gy, qy, c., (v = 1,2, . . .). The system for Er, rot, gt is homogeneous and in the 
following form (the primes denote the derivatives w?th respect to p): 

(3.3) 

ff2% - 

The determinant of the system (3.3) vanishes for any variability function f, 

The algebraic systems for &, q9, 5” (v > 1) are inhomogeneous, with the same 
coefficient matrices in the left side as the system (3.3) and h, as well as Ej, tJj, & 
(j < Y) enter into the right sides of these systems. By satisfying the compatibility 
condition of these systems and expressing & and rfy in terms of & therefrom,we obtain 
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an equation for the variability f and equations for the intensity coefficients 5”. 
The equation for f is 

(3.4) 

We hence obtain 
f = 5 (+& I/n)‘;‘rlp, D = T - p4, p = + (3.5) 

0 

First order linear differential equations are obtained for j, . The equation for cr is 
homogeneous and has the form 

2 
kd 

--Rf'4 % - [$ +$$ + SRf'"l")& =O (3.6) 
f”R 

The equations for & (v = 2, 3, . . . ) are inhomogeneous with the same left sides 
as (3.6) but the h”.enter linearly into the right sides, as do functions of fi already known 

from the calculation of 5”. From these equations we obtain for 5” 

<t = cr (f’f” D-"', 5" = cv (f'?' D-"'f V',(P) + @'y(P) (3.7) 

Here F, and o,, are functions already known from the calculation of 5” and c, are 
arbitrary constants. The equation for f’ is of eighth order, hence, we obtain eight linear- 

ly-independent solutions (3.1) for each of the eight values of f, where k, are assumed 
real and identical for each of the solutions. It follows from (3.5) that depending on the 
sign of D the function f can take on real, pure imaginary, and complex values corre- 
sponding to which the properties of the solutions (3.1) vary. 

Taking a real combination of the eight solutions, let us proceed to solve the boundary 
value problem. For definiteness, let us set a condition of rigid support on the edges b = 

0 and f3 = j3,, 
E = q = 5 = dc/dfi = 0 (3.8) 

although the discussion will also be valid for other boundary conditions. The process of 
finding the a, and the arbitrary constants Cvj (j denotes the number of the solution and 

varies from one to eight) depends essentially on the sign of D. 
Let us assume that D > 0 on [0, PO]. Then f from (3.5) has four real and two pairs of 

pure imaginary values on [0, PO]. Substituting the real combination of eight solutions 
into condition (3.8) and equating the coefficients for identical powers of c in the eight 

series obtained, we obtain a set of systems of eight linear algebraic equations for Cvj 
with parameters h,. The system for crj is homogeneous, and equating the determinant 

to zero, we obtain a transcendental equation for lir and we select its solution hl which 
is of the order of unity, where D > 0 on [0, PO]. The left sides of the algebraic systems 
for cVj (v > 1) are the same as for cti, but the aV enter into the right sides, hence, by 
satisfying the compatibility condition for these systems we find hV uniquely, and then 
by solving these systems we find the arbitrary constants. 

In connection with the fact that (3.4) has two pairs of pure imaginary roots f’, two 
positive, and two negative roots under the condition D > 0 it follows from (3. l), (3.5) 
and (3.7) that the vibrations modes are a linear combination of “distorted” sinusoids. 

Modes for the quarter and one-fifth frequencies correspond to these vibrations from the 
box shell vibrations modes pictured in Figs. 3 and 4. 

Let D < 0 on (0, &J]. Then it follows from (3.5) that all eight values of f are com- 
pletely complex. If, as in the case for D > 0, an attempt is made to construct the 
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process of finding cVi and hV for the conditions (3.8) then it is easy to see that the 
equation for hi has just a single real root, zero. Therefore, under the condition D < 0 

on [0, PO] the lowest natural vibrations frequency has still not been achieved. The same 

deduction can be made if the conditions (3.8) are replaced by simple support conditions 
at b = 0 and p = PO. (We note that a computation for a box shell has shown that if the 
roots of the characteristic equations on both EF and FG are all completely complex, 
then the shell does not vibrate). 

Let us examine the case when hi is such that D changes sign in [0, PO]. For definite- 

ness, let D > 0 in [0, b*), D = 0 for fi = b.,, and D < 0 in (b*, PO]. At the point ,3* 
it follows from the formula for f that (3.4) has four pairs of multiple roots 

The point at which (3.4) for f’ has multiple roots is called a turning point. The beha- 
vior of solutions in the presence of a turning point has been studied in the monograph 

[ 31, for example ; in connection with the problem of free vibrations of shells of revolu- 
tion the turning points have been investigated (see [4] and others). The eight solutions 

of (3.1) -(3.7) are not linearly independent at the turning point. The solution in the 
neighborhood of this point must be constructed by the scheme given in the monograph 

[ 31, say, and must be merged with the solutions of (3.1) - (3.7), which are valid to the 
left and the right of this neighborhood. After the merger has been performed, the desi- 
red natural frequency can be found from the boundary conditions in a first approxima- 
tion and the nature of the behavior of the vibrations modes in the neighborhood itself 
can be clarified . Knowing the nature of the values of f to the left and right of 
the neighborhood , the deduction can be made that the vibrations modes to the 

left of the turning point are “distorted” sinusoids, and to the right are oscillating, 
and damp out. It hence follows that if the turning point is not too close to PO then the 

solutions succeed in being damped sufficiently strongly upon approaching this edge, 
which means that the natural frequency in a first approximation does not depend on the 

boundary conditions at this edge. In the presence of a turning point the vibrations are 
concentrated on the section where primarily D > 0, and the section where D < 0 plays 

the part of a vibrations damper. 
The vibrations in the presence of a turning point correspond to vibrations with the first 

frequency for the box shell vibrations modes 5, shown. The point t;’ in Fig. 2 is not a 
turning point and only corresponds to one in the sense that the roots Cl1 on its left have 
two pairs of pure imaginary values, while all the roots 0, on its right are completely 

complex. 

4. Let us examine the question of constructing the solutions of boundary value prob- 
lems for quasi-transverse vibrations with medium variability. We turn to (3.4). If A, is 
formally increased therein, then it separates 
roots, we obtain 

- 3L1f14 
Hence it follows that 

fi$ = * hT1,l’ [ p @, 
0 

into two equations. For relatively small 

+p4=0 (4.1) 

/z,4 = & ih;‘“f p c@ (4.2) 
0 
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For relatively large roots 

then 
f’8 - &f’” = () (4*3) 

f1,3 = * B?L::(, f3,* = 31 ibhf” (4.4) 

We arrive at (4.1) if the solution is sought in the form (a, q/2 are integers) 

E, = exp (f / 19) (9’ El + P+1E2 + . . .) (4.5) 

rl* = exp (f I E’) (&a~1 + E~+~Q + . . . .) 
C*=exp(fl~~) (C,+eL+....) 
h=&4ah~+&4a-Ilh:!+...,&=(h/1/3(‘1--*))1,’~,u/q<‘/, 

in place of(3.1),(3.2). 
The process of finding the intensity coefficients is constructed as in Sect. 3. The ex- 

pression for c1 is hence the following (cr is an arbitrary constant): 

c1 = c&2 (4.6) 

We obtain four linearly independent solutions (4.5) of the considered system of equa- 
tions from (4.2) for each of the four values off , but they are insufficient for compliance 

with the eight boundary conditions (we call these four solutions the fundamental integ- 

rals). Let us construct four more solutions which have the same asymptotic order k as 
the fundamental integrals but a greater variability (we call these four solutions the aux- 
iliary integrals corresponding to the fundamentals). 

We seek the auxiliary integrals in the form 

E, = exp (f / 8’) (E”~E, j- c2b+1& + . . . .) (4.7) 

r* = exp (f / cb) (&by1 + eb+lq2 + . . . .) 
5+ = exp (fl cb) CL + ~5~ 4 . . . .) 
h=~4ahl+E4a+1h2+...,e=(h/1/3(1-~5;?))”Q, b = (l/2) 4 - a 

Formulas (4.7) result in equation (4.3) for f, which we discussed above. We obtain for 

cl from (4.7) that this quantity is an arbitrary constant, which means that taking (4.4) 
into account the conclusion can be reached that the auxiliary integrals are independent 

of the shell curvature in a first approximation while (4.2) and (4.6) show that the shell 
curvature affects the fundamental integrals in a first approximation. 

It follows from (4.2) and (4.4) that there are two pairs of pure imaginary values (the 

remaining values are real) for the solution of the boundary value problems by using the 
fundamental and auxiliary integrals, just as in the case D > 0 on [O, fit,] (see Sect.3). 

It has been shown in [S] for circular shells when a = 0 and b / q = 1/2, that there 
exist two kinds of vibrations. The vibrations of two kinds also hold for noncircular shells 

for h from (4.5) upon compliance with the inequality from (4.5). 
Let us show this. Denoting the real combination of fundamental integrals by P, and 

auxiliaries by J’, , we can satisfy the boundary conditions by using a solution P, which 
we define as follows: 

P, = P1_t GP, (4.8) 

where g depends on the kind of boundary conditions and the kind of vibrations under 
consideration. Substitution of the solution (4.8) into the boundary conditions (3.8)) 
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after equating the coefficients of identical powers of e in each of the equations ob- 
tained, yields an infinite set of linear algebraic systems for the arbitrary constants C,j 

(Y = 1, 2, . . .) j = 1, 2, . . ., S), in which the a, enter as parameters. The sys- 
tem for Ctj is homogeneous. This system does not separate into subsystems in which the 

number of equations is greater or less than the number of unknowns for two values of the 
exponent: g = 0, g = - b + U. The eighth-order determinant for Cij is the pro- 
duct of the fourth-order determinants. 

In the case g = 0 the quantity hi is found from the condition that the fourth-order 
determinant of the coefficients of those arbitrary constants which correpond to the fun- 
damental integrals and the tangential boundary conditions E = TJ = 0 , equals zero. 

The equation for ?L., is 

cos (A;‘%_“J) = 0 (J = f!, d$) 
0 

whence At = ((N + ‘/a) ZtEa ] J)-4 , where N is an integer of order E-~. The resi- 
duals obtained in the nontangential conditions 5 = dc / @ = 0 are eliminated by 
using the Cij (j = 5, . . . , 8) corresponding to the auxiliary integrals under the 

assumption that the determinant in these Ctjis not close to zero, 
In the case g = - b f a the quantity A, is found upon compliance by the auxi- 

liary integrals with the nontangential conditions from which we obtain the following 

equation for hi: cos (&kb&J = 0, whence a1 = ((T + l/s) 3t~” / B0)4, 
where T is an integer on the order of E-~. The residuals in the tangential boundary 

conditions are eliminated by using the fundamental integrals under the assumption that 
the determinant for Ctj (j = 1, . . ., 4) is close to zero. 

Following [5], let us call vibrations with g = 0 vibrations of type 1 and with g = 
- b + a vibrations of type 2. We note that although the frequency forvibrations of 

type 1 in a first approximation is found from membrane problem, the predominant dis- 

placement <+ is substantially corrected over the whole range [O, PO] (due to the fact 
that the two values of f from (4.4) are pure imaginary) by the auxiliary integrals. For 

vibrations of type 2 both the first approximation of the frequency and the displacement 
& in a first approximation are well defined upon compliance with the nontangential 

boundary conditions by the auxiliary integrals. The succeeding A, (V > I), as well 
as Cvj (V > I), can also be found for vibrations of both types after compliance with the 

compatibility conditions and solving the system of equations for Cvj (v > 1). There 
are no turning points and the associated phenomenon of primarily local vibrations for 

vibrations of both types. 
We note that if a closed, smoothly curved shell is considered, then the interaction 

between the fundamental and auxiliary integrals violated and two independent modes 
of vibrations are obtained : one is constructed on the basis of solutions of the form (4.5) 
with pure imaginary values of f from (4.2). and the other on the basis of solutions of 
the form (4.7) with pure imaginary values of f from (4.4) (this can be shown by repla- 
cing the boundary conditions by eight periodicity conditions in the displacements and 

stress resultants). 
It has been shown in [Z] that both the quasi-transverse vibrations with high variabi- 

lity and the quasi-tangential vibrations depend slightly on the shell curvature, hence 

they will not be examined herein. 
The method of exponential representation of the solution is not applicable to the 
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solution of problems of noncircular cylindrical shell vibrations with low variability; such 

vibrations require special analysis. 

The author is grateful to A. L. Gol’denveizer for supervising the research 
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We consider the generalized cyclic displacements of holonomic mechanical 

systems with a finite number of degrees of freedom, and their application to 
integration of the equations of motion. 

N. G. Chetaev in [l] turned his attention to the formulation of problems deal- 

ing with general properties of mechanical systems and connected with the 

groups of transformations which leave the basic mechanical functions invariant. 
It was he who introduced [2] the concept of cyclic displacement of a mechan- 
ical system with smooth holonomic constraints. This concept was enlarged in 
[3] in the course of considering a particular case of motion of a mechanical 

system with three degrees of freedom. 

1. Let us consider a mechanical system with smooth holonomic constraints, and with 
h degrees of freedom. We assume that the position of the system is determined by the 
real dependent variables x1, x,, . . ., xn (n > k). The possible displacements of this 
system are determined by an intransitive, k-membered group of infinitesimal operators 

II 

i=l 

(a = 1, 2, . . . , k) 

1 

The problem of constructing the groups of possible displacements was studied in [4]. 


